
Raising the Abstraction of Domain-Specific Model Translator Development

Tamás Vajk
Department of Automation and Applied Informatics
Budapest University of Technology and Economics

Budapest, Hungary
tamas.vajk@aut.bme.hu

Róbert Kereskényi, Tihamér Levendovszky, Ákos Lédeczi
Institute for Software Integrated Systems

Vanderbilt University
Nashville, USA

{roby, tihamer, akos}@isis.vanderbilt.edu

Abstract—Model-based development methodologies are gain-
ing ground as software applications are getting more and more
complex while the pressure to decrease time-to-market con-
tinually increase. Domain-specific modeling tools that support
system analysis, simulation, and automatic code generation can
increase productivity. However, most domain-specific model
translators are still manually written. This paper presents
a technique that automatically generates a domain-specific
application programming interface from the same metamodels
that are used to define the domain-specific modeling language
itself. This facilitates the creation of domain-specific model
translators by providing a high-level abstraction hiding all
the cumbersome modeling tool-specific implementation details
from the developer. The approach is illustrated using the
Generic Modeling Environment and the Microsoft .NET C#
language.

Keywords-Domain-Specific Modeling, Metamodeling, Trans-
lator, Code Generation

I. INTRODUCTION

Model-based approaches to software and systems engi-
neering are proliferating. Several modeling tools are widely
used, such as IBM Rational or Borland Together, sup-
port application development with the use of the Unified
Modeling Language (UML) [1]. These are excellent tools
for general purpose software development. Domain-specific
modeling languages (DSML) [2] raise the abstraction level
higher by supporting languages that are custom designed
to a given domain. They work well when domain experts
are the developers who are not necessarily software engi-
neers/programmers. Well known examples of this category
include Matlab/Simulink and Labviews. Naturally, DSML
tools need to support not only the model building process,
but domain-specific model translation including code gener-
ation as well.

Metamodeling tools, such as the Generic Modeling En-
vironment [3], provide the ability to design a metamodel
that defines a DSML. The metamodel defines the rules
of its instance models. The metamodel determines which
types of objects are allowed during the modeling process,
what kind of attributes or relations they can have, etc.
The metamodels are then used to automatically configure
a domain-specific modeling environment. These tools allow
the graphical visualization of both metamodels and models.

Model-based development requires the creation of a
model and then the processing of it as well. Language
engineering is handled by metamodeling, but there is no
general, automated solution for translating the model to nec-
essary artifacts such as code. A typical model translator has
three parts: accessing and traversing the models, processing
the information and generating the corresponding output.
Model access and traversal requires detailed knowledge of
the typically low-level generic API of the modeling tool.
This is typically the most cumbersome and least intellectu-
ally stimulating part of creating a model translator. In this
paper, we present a technique that automatically generates
a high-level, domain specific, object-oriented API from the
metamodels. This API hides the low-level, tool-specific
details and provides an intuitive interface for the model
translator developer. In other words, the technique maps
the whole set of domain-specific constructs captured in the
metamodel to the given programming language. This results
in a ”debuggable” model, as the mapped constructs become
available in an Integrated Development Environment (IDE)
including the debugger. It also enables automatic domain-
specific code completion further decreasing development
time.

II. BACKGROUND

During the design process of a domain-specific language
in a metamodeling environment, a set of provided modeling
constructs can be used. Each modeling tool has a differ-
ent set of constructs that serve as the building blocks of
the metamodeling language and in-turn all domain-specific
languages defined with the tool. These building blocks are
usually hard-coded into the systems. Most tools are capable
of defining the metamodeling language using itself. This
metamodel is referred to as the meta-metamodel. The meta-
metamodel of GME is illustrated in Figure 1.

Model items are defined as First Class Objects (FCOs),
but can be differentiated by the actual type of the class.
(FCO is marked as abstract.) A simple model item is
represented by an Atom node. If structurally hierarchical
models need to be created, Models are used that can contain
other elements. Relations among models can be expressed
by Connections linking two objects together that have the



Figure 1. Part of the meta-metamodel of GME

same parent model, References linking two objects together
that may have separate parents and Sets that link several
objects together within the same parent again. Properties of
model items are represented by Attributes. Apart from these
constructs, a few others exist for constraint handling and
visualization of the models.

Model translators that perform analysis or interpretation
of domain-specific models can be considered extensions of
a modeling environment. The modules cannot be built into
the environment as the domain is not available at the time of
the creation of the generic tool environment. In other words,
the modeling language and the corresponding translator are
created by the user of the generic metaprogrammable tool
and not its developer. However, modeling environments need
to facilitate the creation of these extensions. In GME, this
is solved by the utilization of COM components [4]. The
model translator needs to implement a given COM interface
(GmeLib.IMgaComponentEx) and then it can be registered
into the system. These software modules can access the
model elements through other COM interfaces. With this
technology the model items can be reached via a generic,
domain-independent and low-level API. That is, non-typed
wrapper classes are used. Another, more natural way of han-
dling models, is via a high-level, domain-specific interface.
This allows the programmer to see typed wrapper classes
with names that match the names in the metamodel. This
requires a generation process that creates the appropriate
class structure based on the metamodel. GME supports non-
typed model interpreters in C++, Java, Basic and Python;
furthermore, typed interpreters can be created in C++. The
class hierarchy allowing domain-specific model access in
C++ is called the GME Builder Object Network (BON)
Extension. In Figure 2, the schematic architecture of GME
is depicted.

On the highest level, the meta-metamodel that defines
the rules applying to metamodels is hard-coded into the
system. The metamodel of the selected domain has to be
created by the user, but the system automatically enforces the
rules defined in the meta-metamodel. The domain-specific
modeling environment is automatically generated from the
metamodels. The corresponding model translator is hand-

Figure 2. Schematic overview

coded by the user, but a domain specific API utilizing a class
hierarchy that helps the development is automatically gen-
erated by the system from the metamodels. The interaction
between the model translator and the model is also supported
by the system; the instantiation of the typed wrapper classes
are done automatically on-demand. Finally, the output of the
model translation can be an optimized or analyzed model,
but more frequently it is program code based on the model.

III. CONTRIBUTION

When creating a model translator, the modeling environ-
ment is extended with a layer that makes model elements
reachable from a given platform or language. Our goal
is that the models developed in GME be available from
any Microsoft .NET platform language. Specifically, .NET
C# [5] has been chosen as target language, however, the
approach is general enough not to restrict the solution to
this programming language.

A. Domain-Independent Model Translator API

Naturally, developing a non-typed model translator API is
much easier, because in this case only wrapper classes that
utilize the general API are used. This general API use String
method parameters, corresponding to the names of domain-
specific concepts, to handle the different domains. GME
utilizes COM technology [4] that is widely supported by any
.NET language. Thus, a non-typed (i.e. domain-independent)
model translator API can be automatically generated from
the IDL descriptors of GME interfaces. Also, the skeleton
of the translator can be provided. Figure 3 depicts the
main code segments of such a C# translator. The translator
has to implement several properties that are used by the
environment (such as ComponentProgID) and an entry
point for the user code (InvokeEx).

B. Domain-Specific Model Translator API

For automatically generating a domain-specific model
translator API, one has to handle the different constructs



Figure 3. Non-typed interpreter code segment

supported by the modeling environment and the language.
GME allows domain specific language constructs similar
to the language elements of C++. These partly differ from
the ones used in C#, namely C# does not allow the use
of multiple/interface/implementation inheritance. Also, in
GME, there are some modeling constructs that do not
exist as language elements, such as association classes, sets
or references. Therefore, a projection is needed to map
the modeling constructs to some programming language
elements.

1) Class Hierarchy: Obviously, concepts in the modeling
language should be mapped to similar construct in the
programming languages if one exists. For example, classes
should be created for metamodel nodes. This statement
seems to be logical, but a careful examination of the meta-
metamodel reveals that it is not possible. The problem lies in
the different inheritance types that are supported by GME.
Figure 4 depicts the inheritance part of the MetaGME model.

In GME, a sophisticated inheritance operator set [6]

Figure 4. Inheritance definition in GME

(Figure 4) has been provided. Next to the general inheri-
tance, two additional operators are available to provide finer-
grained control over the inheritance relation. Implementation
inheritance propagates all of the parent’s attributes, but only
the containment association, where the parent functions as
the container, to the child type. No other associations are in-
herited in this case. Interface inheritance allows no attribute
inheritance, but does allow full association inheritance with
the exception of containment relations where the parent
functions as the container are not inherited. Note that the
union of the two special inheritance operators gives the
common inheritance, and their intersection is null.

If only single inheritances had to be supported, normal
class inheritance would be enough in the generated code.
However, GME facilitates multiple inheritance that makes
the generation of the C# equivalent code more complex.
As C# only supports single class inheritance and multiple
interface implementations, at most one model element can be
translated into a class, others involved in the multiple inher-
itance need to be transformed into interface-class pairs. Nat-
urally, it is easier to handle the model elements uniformly;
therefore, each model element should be transformed into
an interface-class pair. Naming conventions in the generated
code is a minor decision, but the user of the system will
have to be familiar with it. Also, the generated code needs
to be natural for the developer, thus, naming has a huge
impact on system usability. We have found that naming the
interface and not the implementation class as the model
element creates a more natural development environment.

As mentioned, each model item requires an interface-class
pair, or more precisely, the model elements that are parents
to other items need the pair, items that are only derived parts
in an inheritance relationship can be translated into classes.
Unfortunately, the described solution generates implemen-
tation classes with the same code fragments. This code
repetition could lead to programming faults in a software
development process. However, in this case the program
code is automatically generated; therefore, we can assume
that in the end, it works as expected and does not require
any modification from the end-user. Figure 5 summarizes
the possibilities.

Another solution for allowing multiple inheritance in C#
has been studied, but that would lead to a less natural output
code that would not resemble the meta. The solution given
in [7] requires the same number of generated classes, but the
parent-child relationship is not solved with inheritance but a
combination of member variables, inheritance and implicit
conversion operators. This would naturally be an appropriate
solution in our case, but the complexity of both the generator
and the output code would increase. Furthermore, none of
the given disadvantages of the first solution applies to our
case.

To support the three types of inheritance operators, ad-
ditional interface indirections have to be introduced in the



generated C# output. Namely, a new interface is required
for each type of operator, which can be implemented by
the derived classes. Unfortunately, the three inheritance
operators can be used orthogonally, thus, there are cases
when a model item is translated into three interfaces and a
class as illustrated in Figure 6.

2) Connections: In our solution, each association class
is translated into a C# class, that contains the member
variables. With the name of the connection, the class can
be queried from the classes that are in the relationship.
Also, as navigation between model items should be based
on the role names of the connections, a navigation method
is also generated into the output. The navigations generated
into the C# code are based on the IEnumerable .NET
interface, which does not allow insertion or addition to these
collections. To create a new connection, the user needs to
create a new instance of the connection class and then use its
Connect method with the appropriate parameters. Figure 7
illustrates the generated code for a simple association.

As we study the meta-metamodel of GME, we note that
association classes are derived from FCOs, which were
included in the inheritance relationships. Thus, there can
be inheritance relationships between association classes.
(Having inheritances between association classes and other
types are not supported, and probably meaningless.) Nat-
urally, derived association classes inherit all the attributes,
constructors and Connect methods from their parent and
extend these with their own members. In Figure 8, a complex
inheritance example is depicted with the generated C# code.

3) Attributes: In GME, three types of attributes can be
created: Boolean, field and enumeration. In the generated
classes, all of them are translated into C# properties that
can query or set the values. In addition, the enumeration
definitions are created in a separate class to allow reusing

Figure 5. Inheritance and generated code

Figure 6. Inheritance and generated code

Figure 7. Simple connection

them.

4) Sets, References, and Models: Modeling concepts that
are unique in a modeling environment can only be translated
into individually constructed code. A set is a collection of
objects, while a reference is a pointer to another object. In
GME, models are special model elements that can contain
other items, thus, this enabling hierarchical models. These
concepts differ in their meaning, however, after studying the
corresponding parts of the meta-metamodel, we can find that
their hierarchical representations are identical (see Figure 9).
This means that the processing of these functionalities
should be handled similarly. Differences are only given by
the member names and types that have to be generated.

However, adding elements to a model differs from adding
an element to a set, because GME handles model contain-
ment as a more integral part of modeling. Containment
can be viewed as an essential concept in GME, every
object (except the root folder) has a container. By default,
GME provides a RootFolder for each of its models
or metamodels, this is the topmost containment level in a
model. Apart from this, all the model elements have their
containers, thus, in the generated code, we have made a
container parameter required in the constructors of model
element class.



Figure 8. Association class inheritance

Figure 9. Sets, References and Containments in MetaGME

5) Class Hierarchy Revisited: Now that the main model-
ing concepts have been mapped to programming constructs,
we have to consider the class hierarchy from another point.
We have already introduced how the items are transformed
into class hierarchy, but how these objects could be refer-
enced needs to be studied. When a class does not have a
child item, we do not face any problem. However, with child
items, the polymorphism [8] of the modeling environment
has to be handled.

In the generated code, a problem arises when classes
corresponding to parent nodes need to be instantiated.
Namely, when a parent item is linked to the currently
processed element, the parent interface has to be used as
the return type in the generated C# output. But in the body
of the method, we need to differentiate between the derived
elements to be able to return the child class instance of the

given element. This means that we have to handle items
with and without child nodes differently not only when the
classes corresponding to them are generated, but also when
those classes are instantiated. With the given method the
polymorphism of the modeling environment is carried out in
the code as well. Figure 10 illustrates the described solution.

When the association defined to class B is processed, the
return type of the generated method would use the class
corresponding to the item on the other side of the connection
if there were no child nodes included in the figure. However,
as there are derived nodes in this case, the interface have to
be used to allow polymorphism in the code. On the other
hand, in the method body, the actual classes have to be
instantiated, thus, the code needs to check the actual type of
the queried element and return an instance of the appropriate
class. The generated code utilizes lazy loading of the model
elements, thus cloning any cached object is not an option in
this case. (The illustrative code in Figure 10 uses the yield
C# keyword, which provides a value to the enumerator return
object.)

6) Processing Algorithm: The processing algorithm that
generates typed model interpreter can be divided into two
parts. Firstly, the elements found in the metamodel has
to be traversed and processed. Secondly, from the parsed
information, the C# output has to be generated.

In the first phase, all the model items are traversed
from the ParadigmSheets. During the traversal, wrapper
classes that represent the objects are generated. In the
second phase, each of the wrapper classes is processed
and the code generation is executed separately. Attribute,
association, containment and inheritance information of the
model elements is queried on-the-fly. Thus, when a class

Figure 10. Polymorphism support



representing a model item is generated into the output, the
surroundings of its wrapper class (in the wrapper object
network) is also used.

Algorithm 1 shows the pseudo code of the algorithm.

Algorithm 1 Processing algorithm
1: procedure Generate(root : RootFolder)
2: for all model in root.getAllParadigmSheets() do
3: ProcessParadigmSheet(model)
4: for all wrapper in General.Wrappers do
5: wrapper.GenerateCode()
6:
7: procedure ProcessParadigmSheet(model : Model)
8: for all object in model.ChildObjects do
9: if object.Type = ATOM then

10: CreateAtomWrapper(object)
11: else
12: ... {handle other model element types}

7) C# BON in Action: This section illustrates a simple
hierarchical state machine language and the generated API
for model translator development. The corresponding meta-
model depicted in Figure 11. Note that our state machine
metamodel contains a State that can contain substates and a
Transition association that provides links between the States.
Start states in the FSM model are differentiated by a Boolean
attribute. The main segments of the generated classes, such
as the members, the body of an attribute retrieval and the
body of a connection query, are shown in Figure 12.

In Figure 13, the main method of the model processor
is depicted. In this example, we check whether each of
our states contains exactly one StartState. The code depicts
that even the root folder (the top level container) has its
equivalent generated class. This is the primary connection
point between the model and the code.

Finally, in Figure 14, the recursive checking functions
are depicted. Notice that the generated domain-specific API
makes it trivial to write translators since it hides all the tool-
specific details on how to access the generic data structures
representing the models.

IV. CONCLUSION

Metaprogrammable modeling tools, such as GME, make
it easy to develop domain-specific modeling languages. This

Figure 11. Finite State Machine metamodel

Figure 12. Generated classes to the FSM metamodel

Figure 13. Main method of the interpreter

simplicity should be transferred to model translator creation
as well. In this paper, a general method has been illustrated
to allow the generation of a domain-specific API from the
metamodels that describe the corresponding domain-specific
modeling language. The given process not only maps the



Figure 14. Verifier methods in the interpreter

domain-specific constructs to a programming language, but
it also generates a program representation of the designed
models. Thus, the modeling concepts and wrapper objects
of the models themselves become available during program-
ming. The generated code allows the interaction between the
modeling environment and the application code, as it can be
used to traverse the model hierarchy and also to modify
or create model items. This extension to the modeling
environment gives a more natural development environment
to the users as all their usual development tools can be
utilized to analyze the code representation of the model.

ACKNOWLEDGMENT

Tamás Vajk would like to thank the Institute for Software
Integrated Systems at Vanderbilt University for providing a
summer internship to him.

REFERENCES

[1] M. Fowler, UML Distilled: A Brief Guide to the Standard
Object Modeling Language. Addison-Wesley Professional,
Second ed., August 1999.

[2] S. Kelly and J.-P. Tolvanen, Domain-Specific Modeling: En-
abling Full Code Generation. Wiley-IEEE Computer Society,
March 2008.

[3] “Generic Modeling Environment Website.”
http://www.isis.vanderbilt.edu/projects/gme/.

[4] A. Nathan, .NET and COM: The Complete Interoperability
Guide. Sams, February 2002.

[5] D. S. Platt, Introducing Microsoft .NET. Microsoft Press,
Third ed., May 2003.

[6] Á. Lédeczi, M. Maróti, and P. Völgyesi, “The Generic Model-
ing Environment,” tech. rep., Institute for Software Integrated
Systems, Vanderbilt University, May 2007.

[7] D. Esparza-Guerrero, “Simulated Multiple Inheritance Pattern
for C#.” Code Project, 2005. Design pattern for simulating
multiple inheritance in C#.

[8] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, De-
sign Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, November 1994.


